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Semigroups and monoids

Throughout, S is a semigroup i.e. a set with an associative binary
operation.

If ∃ 1 ∈ S with 1a = a = a1 for all a ∈ S , then S is a monoid.

An idempotent is an element e ∈ S such that e = e2.

Let E = {e ∈ S : e is idempotent} = E (S).

If S is a monoid, then clearly 1 ∈ E .
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Examples of semigroups

• Groups

• Multiplicative semigroups of rings, e.g. Mn(R)

• Let X be a set:

TX : = {α | α : X → X}
PT X : = {α | α : Y → Z ,Y ,Z ⊆ X}
SX : = {α | α : X → X , α bijective}
IX : = {α | α : Y → Z ,Y ,Z ⊆ X , α one-one}

are monoids under ◦, the full transformation monoid, the partial
transformation monoid, the symmetric group, and the symmetric
inverse monoid on X , respectively.

• If X = n = {1, . . . , n}, then we usually write Tn for TX , etc.
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Examples of semigroups: free semigroups

• Let X be a set and let

X+ = {x1 . . . xn : n ∈ N}

with
(x1 . . . xn)(y1 . . . ym) = x1 . . . xny1 . . . ym.

Then X+ is the free semigroup on X .



Monoids of endomorphisms

Let A be set with structure e.g. A is partially ordered, or A is an algebra
(in the sense of universal algebra).

Let
EndA = {α | α : A → A preserves the structure}.

Then EndA is a monoid, the endomorphism monoid of A.



Bands

A band is a semigroup S such that S = E (S).

Let I ,Λ be non-empty sets, let T = I × Λ and define

(i , λ)(k , µ) = (i , µ).

Then T is a band, the rectangular band on I × Λ.

(i , λ)
(i , λ)(k , µ)
= (i , µ)

(k , µ)

T is only a monoid if it is trivial.
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Idempotent generated semigroups

For a subset A of a semigroup S we put

〈A〉 = {a1 . . . an : n ≥ 1, ai ∈ A};

〈A〉 is the subsemigroup generated by A.

Clearly X+ is generated by X .

S is idempotent generated if S = 〈E 〉.
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Examples of idempotent generated semigroups

Some familiar semigroups are idempotent generated:

Example 1 For α ∈ Tn let rank α = | Imα|. Clearly

Sn = {α ∈ Tn : rankα = n}.

Let
S(Tn) = {α ∈ Tn | rankα < n}.

Then S(Tn) is idempotent generated (Howie, 1966).

S(Tn) is called the singular part of Tn and often denoted Singn.
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Examples of idempotent generated semigroups

Example 2 Let D be a division ring. Then

S(Mn(D)) = {A ∈ Mn(D) : rankA < n}

is idempotent generated (J.A. Erdös, 1967, Dawlings, 1979, Laffey,
1973).

Example 3 Let A be an independence algebra with rank A = n. Then

S(EndA) = {α ∈ End(A) : rankα < n}

is idempotent generated (Fountain and Lewin, 1992.)
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Green’s relations: R,L,H and D

Let S be a semigroup. Then

aR b ⇔ aS1 = bS1 ⇔ a = bs, b = at, s, t ∈ S1

aL b ⇔ S1a = S1b ⇔ a = sb, b = ta, s, t ∈ S1

H = L ∩R
D = L ∨R = R ◦ L = L ◦ R.

A trick to note For e, f ∈ E , if eS1 ⊆ fS1, then from e = fu we obtain

fe = ffu = fu = e.

Hence
eR f ⇔ ef = f and fe = e

e L f ⇔ ef = e and fe = f .



Green’s relations: R,L,H and D

Let S be a semigroup. Then

aR b ⇔ aS1 = bS1 ⇔ a = bs, b = at, s, t ∈ S1

aL b ⇔ S1a = S1b ⇔ a = sb, b = ta, s, t ∈ S1

H = L ∩R
D = L ∨R = R ◦ L = L ◦ R.

A trick to note For e, f ∈ E , if eS1 ⊆ fS1, then from e = fu we obtain

fe = ffu = fu = e.

Hence
eR f ⇔ ef = f and fe = e

e L f ⇔ ef = e and fe = f .



A curious thought

Let G be a group. How is G related to idempotents?

A group has precisely one idempotent, thus G is idempotent generated
if and only if G is trivial.

A subgroup of S is a subsemigroup of S that is a group under the
restricted product.

Fact The maximal subgroups of S are the H-classes

He , e ∈ E .

Is it possible that G is a subgroup of S such that

G ⊆ 〈E 〉?

Yes! Let |G | = r < ∞. Pick ǫ = ǫ2 ∈ S = S(Tn) with rank ǫ = r ; it is
known that Hǫ

∼= Sr . Then

G ≤ Sr
∼= Hǫ ⊆ S = 〈E 〉.
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Free G -acts

Let G be a group and n ∈ N.

The free G -act Fn(G ) is given by

Fn(G ) = Gx1 ∪ Gx2 ∪ . . . ∪ Gxn

where
g(hxi ) = (gh)xi (note we identify xi with exi ).

If α ∈ EndFn(G ) then (gxi )α = g(xiα) and we can write α ∈ EndFn(G )
as

α =

(
x1 x2 . . . xn

g1x1α g2x2α . . . gnxnα

)

.

Note that Fn(G ) is an independence algebra, so

S(EndFn(G )) = {α ∈ EndFn(G ) : rankα < n} = 〈E 〉.
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Free G -acts: rank 1 D-class

For elements α, β ∈ EndFn(G ) or S = S(EndFn(G )) we have

αRβ ⇔ Kerα = Ker β
αLβ ⇔ Imα = Imβ
αD β ⇔ rankα = rankβ.

Let D1 = {α ∈ S : rankα = 1}.

Fact D1 is completely simple. That is,

D1 =
⋃

(i ,λ)∈I×Λ

Hiλ

and each Hiλ is a group; moreover,

HiλHjµ ⊆ Hiµ.
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Free G -acts: rank 1 D-class

n indexes the L-classes Lk

α ∈ Lk ⇔ Imα = Gxk .

I indexes R-classes Ri

R1 corresponds to the kernel 〈(x1, xi ) : 1 ≤ i ≤ n〉

Put Hiλ = Ri ∩ Lλ.

D1 I

n
︷ ︸︸ ︷





H11 H1k

Hi1 Hik

It is known that H11
∼= Hiλ

∼= G , for any i , λ, so again,

G ≤ 〈E 〉.
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Generating H11

If rankα = 1, we have

α =

(
x1 x2 . . . xn
g1xi g2xi . . . gnxi

)

for some (g1, . . . , gn) ∈ Gn and i ∈ n.

1 ∈ n corresponds to i = 1, i.e. Imα = Gx1

1 ∈ I corresponds to Kerα = 〈(x1, xi ) : 2 ≤ i ≤ n〉. i.e. g1 = . . . = gn.

If α ∈ H11, then

α =

(
x1 x2 . . . xn
gx1 gx1 . . . gx1

)

so H11
∼= G

=

(
x1 x2 . . . xn
x1 x1 . . . x1

)(
x1 x2 . . . xn
gx2 x2 . . . x2

)(
x1 x2 . . . xn
x1 x1 . . . x1

)

= e11ei2e11

for some i ∈ I . Hence H11 = {e11eiλe11 : i ∈ I , λ ∈ Λ} and

G ∼= H11 ⊆ 〈E 〉.
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Biordered sets

Let E = E (S).

Definition For e, f ∈ E

e ≤R f ⇔ fe = e and e ≤L f ⇔ ef = e.

We have that ≤R (≤L) is a preorder with associated equivalence R (L).

Note If e ≤R f then fe = e and

(ef )(ef ) = e(fe)f = eef = ef ,

so that ef ∈ E . We say that

ef , fe are basic products if e ≤R f , f ≤R e, e ≤L f or f ≤L e.
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Biordered sets

1 Under basic products, E satisfies a number of axioms; if S is regular,
an extra axiom holds.

2 A biordered set is a partial algebra satisfying these axioms; if the
extra one also holds it is a regular biordered set.

3 A biordered set is regular if and only if E = E (S) for a regular
semigroup S Nambooripad (1979).

4 The category of inductive groupoids whose set of identities form a
regular biordered set is equivalent to the category of regular
semigroups Nambooripad (1979).

5 Any biordered set E is E (S) for some semigroup S Easdown (1985).
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Free idempotent generated semigroups

Let E be a biordered set. We can assume E = E (S) for a semigroup S .
Let

E = {e : e ∈ E}

and let
E
+
= {e1 . . . en : n ≥ 1, ei ∈ E},

the free semigroup on E .

Definition

IG (E ) = 〈E : ef = ef , ef is a basic product〉

= E
+
/〈(ef , ef ) : ef is a basic product〉.
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Free idempotent generated semigroups

Facts

1 IG(E ) = 〈E 〉.

2 If S = 〈E 〉, then e 7→ e is an onto morphism.

3 E (IG(E )) = E ∼= E , as a biordered set.

4 The above morphism is one-one on the set of R-classes and L-classes
within a regular D-class.

In view of the above, IG(E ) is called the free idempotent generated
semigroup on E .
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Maximal subgroups of free idempotent generated
semigroups

These groups are homotopy groups of complexes determined by
idempotent sequences and singular squares.

For Mn(D) the ≤R and ≤L orders are given by subspace inclusion.

Putcha and Renner’s theory of algebraic monoids shows that for connected
reductive monoids the biorder is intimately related to the Tits building of
the group of units.

Since independence algebras are generalizations of vector spaces, there
should be a way to see establish geometry there.

One aim is to relate the presentations of the maximal subgroups to the
behaviour of the geometry.
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What groups can arise as maximal subgroups of IG(E )?

1 All such groups discovered in 1970s, 80s, 90s were free.

2 2002 it was formally conjectured that all such groups were free.

3 2009 Brittenham, Margolis and Meakin found Z⊕ Z as a maximal
subgroup of some IG(E ).



Result of Gray and Ruskuc

Gray, Ruskuc (2012) show that any group can arise in this way.

1 Ruskuc (1999) found a presentation for He , where e ∈ S and S is
given by a presentation.

2 Gray and Ruskuc (2012) develop this to give presentations for He in
IG(E ).

3 Given a group G they then construct a biordered set E such that
He

∼= G .
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A current popular pastime

Question Given an idempotent generated semigroup S , find the groups
He in IG(E ). More particularly, find when He

∼= He .

1 2010 Brittenham, Margolis and Meakin If A ∈ E (Mn(D)) and
rankA = 1, then HA

∼= HA
∼= D∗.

2 2012 Gray, Ruskuc If e ∈ E (Tn) and rank e = r ≤ n − 2, then
He

∼= He
∼= Sr .

3 2014 Dolinka, Gray If A ∈ E (Mn(D)) and rankA = r < n/3, then
HA

∼= HA
∼= GL(r ,D).

For all of these cases, the rank n − 1 idempotents produce free groups in
IG(E ).



A current popular pastime

Question Given an idempotent generated semigroup S , find the groups
He in IG(E ). More particularly, find when He

∼= He .

1 2010 Brittenham, Margolis and Meakin If A ∈ E (Mn(D)) and
rankA = 1, then HA

∼= HA
∼= D∗.

2 2012 Gray, Ruskuc If e ∈ E (Tn) and rank e = r ≤ n − 2, then
He

∼= He
∼= Sr .

3 2014 Dolinka, Gray If A ∈ E (Mn(D)) and rankA = r < n/3, then
HA

∼= HA
∼= GL(r ,D).

For all of these cases, the rank n − 1 idempotents produce free groups in
IG(E ).



A current popular pastime

Question Given an idempotent generated semigroup S , find the groups
He in IG(E ). More particularly, find when He

∼= He .

1 2010 Brittenham, Margolis and Meakin If A ∈ E (Mn(D)) and
rankA = 1, then HA

∼= HA
∼= D∗.

2 2012 Gray, Ruskuc If e ∈ E (Tn) and rank e = r ≤ n − 2, then
He

∼= He
∼= Sr .

3 2014 Dolinka, Gray If A ∈ E (Mn(D)) and rankA = r < n/3, then
HA

∼= HA
∼= GL(r ,D).

For all of these cases, the rank n − 1 idempotents produce free groups in
IG(E ).



A current popular pastime

Question Given an idempotent generated semigroup S , find the groups
He in IG(E ). More particularly, find when He

∼= He .

1 2010 Brittenham, Margolis and Meakin If A ∈ E (Mn(D)) and
rankA = 1, then HA

∼= HA
∼= D∗.

2 2012 Gray, Ruskuc If e ∈ E (Tn) and rank e = r ≤ n − 2, then
He

∼= He
∼= Sr .

3 2014 Dolinka, Gray If A ∈ E (Mn(D)) and rankA = r < n/3, then
HA

∼= HA
∼= GL(r ,D).

For all of these cases, the rank n − 1 idempotents produce free groups in
IG(E ).



A current popular pastime

Question Given an idempotent generated semigroup S , find the groups
He in IG(E ). More particularly, find when He

∼= He .

1 2010 Brittenham, Margolis and Meakin If A ∈ E (Mn(D)) and
rankA = 1, then HA

∼= HA
∼= D∗.

2 2012 Gray, Ruskuc If e ∈ E (Tn) and rank e = r ≤ n − 2, then
He

∼= He
∼= Sr .

3 2014 Dolinka, Gray If A ∈ E (Mn(D)) and rankA = r < n/3, then
HA

∼= HA
∼= GL(r ,D).

For all of these cases, the rank n − 1 idempotents produce free groups in
IG(E ).



A current popular pastime - why not join in?

Observation Sets and vector spaces are examples of independence
algebras.

Question Let A be an independence algebra with rankA = n and let

S = S(End(A)) = {α ∈ EndA : rankα < n} = 〈E 〉.

If e ∈ E (S) with rank e = n − 1, then He is free.

Is it true that for e ∈ E (S) with rank e ≤ n − 2,

He
∼= He?

What if rank e = 1?

What if rank e = 1 and A is a free G -act?
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An easy way to get any group in an IG(E )
G and Dandan Yang

Theorem: G and Dandan Yang Let A = Gx1 ∪ . . .Gxn be a free G -act
of rank n ≥ 3, and let e ∈ EndA be a rank 1 idempotent. Then

Hē
∼= He .

Recall He
∼= G !

Corollary Any group occurs as a maximal subgroup of some IG(E ).

Note Our proof is very easy; we do not need presentations; we use a
natural biordered set.
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Going upwards

Theorem: Dolinka, G, Yang Let A = Gx1 ∪ . . .Gxn be a free G -act of
rank n ≥ 3, and let e ∈ EndA be an idempotent with rank e ≤ n− 2. Then

Hē
∼= He .

Corollary Taking G to be trivial we obtain the Gray/Ruškuc result for Tn.

Corollary Taking n = 1 we obtain any group (again!)



Where next?

Let A be an independence algebra of rank n ≥ 3 and e ∈ End(A) with
rank e ≤ n − 2.

When do we have
He

∼= He?

1 True for rank e = 1, A has no constants G and Yang.

2 True for A = V4(D), rank e = 2 Yang et al

3 Conjectured not true for A = V6(Z2), rank e = 2 O’Brien et al

If we do not have this, what does He look like?

What is the general structure of IG(E )? Is is always weakly abundant?
This is certainly true if E is a band G and Yang....
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